Marty Moad's Western Winner: "El Toro"

- Although principally a sport R/C model, El Toro is capable of the AMA precision pattern maneuvers. It can be a real "bomb" in the hands of an accomplished multi-flyer, yet gentle as a lamb when throttled back—or with a smaller engine—in the hands of a novice. Inherent stability is great, as is its speed range. It will do Cuban (pardon the expression) eights, wing-overs, just about everything. You push the button and El Toro will do anything within reason, up-right or inverted.

Wing span runs to 72", length 49", wing area is 729 sq. inches. Weight (dry) is 6 pounds. Powered by a K&B 45, El Toro utilizes C.G. Atlas 8-channel equipment and Bonner servos. It will be noted that El Toro is quite clean, aerodynamically speaking. This results in a model that accelerates rapidly when put in a dive, so it calls for some sharp piloting.

The airfoil is fully symmetrical—the lower camber of an NACA 2415 airfoil used for both cambers on my version. Maximum root thickness runs to 1-5/8", tips 9/16". The wing is very light yet strong, similar to sailplane wing construction. Note that the 3/16" sq. spar construction is boxed in at the rear with 1/16" plywood, fore and aft, out to rib W3. Tied in with generous sheeted areas, this type of wing flexes just enough, yet has sufficient strength for the wildest maneuvers. An opening in the top of the wing covering at the center section, 2-1/2" by 3-1/2" gives access to the aileron servo, mounted just aft of the spar. Bicycle spokes are used for aileron hinges, with the nipple ground flat along one side and cemented to the underside of the aileron and the spoke cemented to the wing undercamber. The receiver-servo board detailed on

This "Multi" radio control Las Vegas "bomb" has been heralded as one of the West Coast's best contest flyers. "Model Progress" department has noticed that a thin (.015") wire runs along the entire span of the spar, top and bottom, then one can see how the spar bending strength has been greatly increased. When installed in this manner, the wire is not subjected to bending, but to compression and tension. We would like to give credit to E. R. Jameson, who compiled this text.

- Although principally a sport R/C model, El Toro is capable of the AMA precision pattern maneuvers. It can be a real "bomb" in the hands of an accomplished multi-flyer, yet gentle as a lamb when throttled back—or with a smaller engine—in the hands of a novice. Inherent stability is great, as is its speed range. It will do Cuban (pardon the expression) eights, wing-overs, just about everything. You push the button and El Toro will do anything within reason, up-right or inverted.

Wing span runs to 72", length 49", wing area is 729 sq. inches. Weight (dry) is 6 pounds. Powered by a K&B 45, El Toro utilizes C.G. Atlas 8-channel equipment and Bonner servos. It will be noted that El Toro is quite clean, aerodynamically speaking. This results in a model that accelerates rapidly when put in a dive, so it calls for some sharp piloting.

The airfoil is fully symmetrical—the lower camber of an NACA 2415 airfoil used for both cambers on my version. Maximum root thickness runs to 1-5/8", tips 9/16". The wing is very light yet strong, similar to sailplane wing construction. Note that the 3/16" sq. spar construction is boxed in at the rear with 1/16" plywood, fore and aft, out to rib W3. Tied in with generous sheeted areas, this type of wing flexes just enough, yet has sufficient strength for the wildest maneuvers. An opening in the top of the wing covering at the center section, 2-1/2" by 3-1/2" gives access to the aileron servo, mounted just aft of the spar. Bicycle spokes are used for aileron hinges, with the nipple ground flat along one side and cemented to the underside of the aileron and the spoke cemented to the wing undercamber. The receiver-servo board detailed on